
 1 

SUPPLEMENTARY NOTE 
 

Variation among intact tissue samples  

reveals the core transcriptional features of human CNS cell classes 

 
Kevin W. Kelley1-5, Hiromi Nakao-Inoue2-4, Anna V. Molofsky2-4, Michael C. Oldham1-3* 

  

 
1Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, 

USA 

2The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of 

California at San Francisco, San Francisco, CA, USA  

3Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA  

4Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA  

5Medical Scientist Training Program and Neuroscience Graduate Program, University of California at 

San Francisco, San Francisco, CA, USA 

 
 

 

 

 

 

 

 

*Correspondence: Michael.Oldham@ucsf.edu 

  

mailto:Michael.Oldham@ucsf.edu


 2 

Table of Contents 
 

1. Supplementary discussion 

1.1 Reproducibility of gene coexpression modules enriched with markers of major cell classes in 

CNS transcriptomes derived from intact tissue samples 

 1.2 Identifying cellular and molecular correlates of aging 

 1.3 Inferring cell-class associations for CNS disease genes 

 1.4 Determining molecular and cellular phenotypes in pathological samples 

 1.5 Studying regional diversity of human CNS cell classes 

 1.6 Identifying species differences in transcriptional regulation 

 1.7 New functional insights into human neurobiology 

  



 3 

1. Supplementary discussion 

 
1.1 Reproducibility of gene coexpression modules enriched with markers of major cell classes in CNS 

transcriptomes derived from intact tissue samples 

 

We previously discovered highly reproducible gene coexpression modules in microarray data from intact 

human brain samples that were significantly enriched with markers of major CNS cell classes1. These 

findings were subsequently replicated by independent gene coexpression studies of intact CNS 

transcriptomes from mice2-5, rats6, 7, zebra finches8, 9, macaques10, 11, and humans4, 12-17; see Oldham18 for 

further discussion. The reproducibility of these modules is the inevitable result of two simple ideas: i) 

different cell classes express different genes, and ii) intact tissue samples exhibit variability in cellular 

composition. Therefore, the genes that are most specifically and consistently expressed in the same cell 

class appear highly correlated when analyzed over a large number of biological replicate samples. 

Conversely, the expression patterns of these (high-fidelity) genes can be used to infer variation in the 

relative abundance of a cell class over heterogeneous samples, which can in turn be used to create 

mathematical models of gene expression as a function of variation in cellular composition. Below we 

provide additional discussion for diverse applications of this approach that we explore in the main text. 

 

1.2 Identifying cellular and molecular correlates of aging 

 

Several studies have reported age-related changes in gene expression in bulk human brain 

transcriptomes19-21. However, it has been difficult to determine whether such changes are primarily cell-

intrinsic or due to changes in the cellular composition of the human brain with age. We therefore used 

expression patterns of high-fidelity genes to infer relationships between estimated cellular abundance and 

age in 32 CNS datasets. We observed that neuronal and oligodendroglial abundance were negatively 

correlated with age, while astrocytic and microglial abundance were positively correlated with age. The 

relative significance of the observed trends suggests that loss of neurons and oligodendrocytes may 

explain the relative increase in microglia and astrocytes. This interpretation is consistent with stereological 

evidence for decreased neuronal and oligodendroglial abundance in aged human brains22, 23. After 

controlling for variation in the inferred abundance of major cell classes, incorporating age as a covariate 

did not noticeably improve model performance (Fig. 5E). Furthermore, we were unable to identify genes 

that consistently showed age-related changes in gene expression that were independent of changes in 

cellular composition in all analyzed datasets (data not shown). While it is possible that our studies were 

underpowered to identify such changes, the most parsimonious explanation for our findings is that age-

related changes in gene expression in bulk human brain samples are primarily driven by age-related 

changes in cellular composition. 

 

1.3 Inferring cell-class associations for CNS disease genes 

 

By modeling gene expression in bulk CNS transcriptomes as a function of variation in cellular 

composition, we inferred cell-class associations for diverse CNS disease genes. Some well-studied genes 

showed surprising associations. For example, mutations in NPC1 cause Niemann-Pick type C disease, a 

rare autosomal recessive neurodegenerative disorder24. Studies of NPC1 in model organisms have 

traditionally assumed a neuronal origin for disease pathogenesis; however, our analyses suggest that the 

overwhelming majority of NPC1 mRNA in the adult human CNS is produced by oligodendrocytes (Fig. 

3B). Using a curated database of results from genetic association studies25, we analyzed cell-class-specific 

expression patterns of genes associated with complex CNS diseases. In general, genes expressed by 

neurons and astrocytes were associated with neurodevelopmental disorders, whereas genes expressed by 

astrocytes and microglia were associated with neurodegenerative disorders. The prevalence of significant 
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associations between astrocytic gene expression and genetic risk for developing diverse CNS diseases was 

unexpected and points to the need for more research on astrocyte biology in health and disease. 

 

1.4 Determining molecular and cellular phenotypes in pathological samples 

 

Gene expression modeling in bulk tissue transcriptomes can also reveal cell-class-specific expression 

changes associated with disease26. Using expression patterns of high-fidelity genes as proxies for cellular 

abundance, we controlled for variation in cellular composition and identified specific genes and biological 

pathways that were consistently up-regulated in AD neurons and microglia in independent datasets. For 

example, despite overall loss of neurons in AD, HIGD1A and YWHAH are significantly up-regulated in 

AD neurons (Fig. 6G). Interestingly, both of these genes have been shown to exert anti-apoptotic effects 

in response to cell stress27, 28. Genes that are up-regulated in AD microglia are also of particular interest 

given the strong association between AD risk alleles and microglial gene expression illustrated in Fig. 6B. 

Beyond identifying cell-intrinsic changes in gene expression, our approach also enables inferences about 

changes in cellular composition associated with pathology. We found that predicted changes in AD 

(decreased neuronal abundance and increased astrocytic / microglial abundance) were highly consistent 

across datasets. Although these changes are relative and must be confirmed by independent means, this 

strategy should accelerate efforts to determine whether differences in cellular composition are associated 

with diverse CNS disorders. 

 

1.5 Studying regional diversity of human CNS cell classes 

 

Although regional heterogeneity among neurons is well established, the extent of regional heterogeneity 

among glia is less well understood. By modeling gene expression in distinct CNS regions as a function of 

variation in cellular composition, we confirmed extensive transcriptional heterogeneity in neurons and 

identified nearly 100 genes whose expression patterns are likely to distinguish neuronal subtypes in the 

human CNS. We also found evidence for significant regional expression variation in astrocytes, which, to 

our knowledge, has not previously been described in the human brain. In contrast to previous work29, 30, 

we observed much less evidence for expression variation among microglia and oligodendrocytes. 

However, it is important to note that our analysis was designed to detect binary expression differences. 

Analysis of more subtle differences in gene expression levels may therefore reveal additional evidence of 

regional diversity. 

 

1.6 Identifying species differences in transcriptional regulation 

 

Previous studies have compared CNS gene expression between humans and mice using in situ 

hybridization31, gene coexpression analysis4, 13, 32, or expression profiling of purified cell classes33. Our 

study extends previous work by employing a modeling framework and analyzing a larger number of 

samples, CNS regions, and technology platforms, while incorporating outgroup data from non-human 

primates. Over all homologous genes, neuronal expression fidelity was more conserved between humans 

and mice than glial expression fidelity. On a gene-by-gene basis, the majority of cell-class-specific 

expression differences were found in glia. Our findings are consistent with previous studies comparing 

humans and mice that reported weaker conservation of glial coexpression modules than neuronal 

coexpression modules4, 13. In contrast, analysis of purified human and mouse brain cell classes suggested 

similar transcriptional divergence for neurons and glia33. Although this discrepancy requires further study, 

we note that the strong conservation of expression fidelity in neurons relative to glia is mirrored at the 

protein level: high-fidelity neuronal genes are significantly less tolerant to loss-of-function and missense 

mutations than high-fidelity glial genes (Fig. 3A-D). Furthermore, resampling indicated that, on average, 

LoF (and missense) mutation intolerance for high-fidelity genes was far greater than expected by chance 
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for neurons (p < 10-5), but not glia (p > 0.05). Collectively, these findings suggest that neurons are under 

greater evolutionary constraint than glia. 

 

1.7 New functional insights into human neurobiology 

 

Human astrocytes are larger and more morphologically complex than mouse and non-human primate 

astrocytes34, 35. Upon transplantation of human glial progenitors into mice, one group found that human 

cells grew into large astrocytes and that the transplanted mice had enhanced cognitive abilities36. However, 

little is known about the cell-intrinsic molecular programs that govern these observed differences. 

Through comparative modeling of gene expression in humans and mice, we identified PMP2 as highly 

expressed in human but not mouse astrocytes (Fig. 8B-D,F). We also found that expression of PMP2 in 

the neocortex has increased monotonically from mice to non-human primates to humans (Fig. 8E), and 

that ectopic expression of PMP2 in mouse astrocytes led to larger and more complex mouse astrocytes in 

vivo (Fig. 8G-I, Fig. S12F). 

PMP2 is a small, basic, fatty acid-binding protein (a.k.a. FABP8) that localizes to membranes, 

binds lipids in its beta-barrel pocket, and attaches to negatively charged membranes through electrostatic 

and hydrophobic interactions37, 38. It is thought to be an important determinant of membrane stability and 

lipid dynamics in peripheral myelin39 and has been shown to transport fatty acids to lipid vesicles and 

membranes39. Molecular simulations have identified cholesterol as one major candidate for binding in the 

PMP2 pocket37. Because cholesterol and other fatty acids are important for membrane fluidity, we 

postulate that PMP2 expression has increased the morphological complexity of human astrocytes by 

enhancing membrane fluidity, thereby expanding their volumetric domain and the plasticity with which 

they are able to monitor and respond to their extracellular environments. 
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